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We introduce a simple “toy” brain model. The model consists of a set of randomly connected, or lay-
ered integrate-and-fire neurons. Inputs to and outputs from the environment are connected randomly to
subsets of neurons. The connections between firing neurons are strengthened or weakened according to
whether the action was successful or not. Unlike previous reinforcement learning algorithms, the feed-
back from the environment is democratic: it affects all neurons in the same way, irrespective of their po-
sition in the network and independent of the output signal. Thus no unrealistic back propagation or oth-
er external computation is needed. This is accomplished by a global threshold regulation which allows
the system to self-organize into a highly susceptible, possibly “critical” state with low activity and sparse
connections between firing neurons. The low activity permits memory in quiescent areas to be conserved
since only firing neurons are modified when new information is being taught.

PACS number(s): 87.22.As, 87.22.Jb, 82.20.Wt

I. INTRODUCTION

The mechanisms of the brain are poorly understood.
The brain has billions of neurons, rather complicated
themselves, each connected to thousands of other neu-
rons. How then can one possibly generate a theory that
deals with all these elements? Even to write down the
map of the brain would require libraries of books. It has
been said that the brain must necessarily be so complicat-
ed that it cannot possibly be understood by the brain.

Let us compare with the way we would understand a
man-made object, namely a computer. First, one might
suspect that the function is intimately related to the de-
tails. We would have to understand the quantum
mechanical properties of the materials, silicon, etc., on
which the transistors in the computer are based in order
to explain how the various currents and potentials de-
pend on each other. Actually the computer engineer
could not care less about how the transistor works—it is
irrelevant for his purposes. Whether the elements are of
one type or another, whether they are of electrical, opti-
cal, or mechanical nature is irrelevant as long as they per-
form the correct function, that is, for instance, to carry
out a simple logical operation such as an “AND” or
“OR” logical operation on two bits.

Second, the truth could be in the complexity, or the in-
tricacies of a vast number of interacting elements. Al-
though one might think that the computer works because
of its vast number of circuits, it is not so. The world’s
largest computers work the same way as the smallest
pocket calculator. It simply has more storage, more pro-
cessors, more input devices, etc. A computer is basically
a simple device, sending numbers or bits from one loca-
tion to another, and performing trivial operations with
pairs of those numbers.

In order to understand the computer one has to under-
stand the principles by which the elements are put to-
gether. The same, we argue, goes for the brain. The goal
must be to understand the principles by which the neu-
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rons interact with each other, and with the
environment—through muscles, sensory organs, etc.
This does not mean that the study of the hardware, such
as the flow of Ca?* and Na™ ions at the synapses and ax-
ons, is irrelevant, but only that this study can be decou-
pled from a general study of the mechanisms of the brain.
This premise forms the basis of the field of neural net-
works: that underlying principles for brain function can
be understood with models that have simple structure.

There is one major conceptual difference between un-
derstanding the computer and understanding the brain.
The computer was built by design. An engineer put to-
gether all the circuits and made it work. No engineer—
no computer. However, there is no engineer around to
correct all the synapses of the brain. Even more so, there
is no engineer to make readjustments every time the outer
world poses the brain with a new problem. One might
imagine that the brain is ready and hard-wired at birth,
with its connections formed through biological evolution,
and all possible scenarios anticipated well ahead and cod-
ed into the DNA. This does not make any sense. Evolu-
tion is efficient, but not that efficient, certainly not for
time scales much smaller than the lifetime of the indivi-
dual. Indeed, the amount of information contained in the
DNA is sufficient to determine the rules of the neural
connections but vastly insufficient to specify the whole
neural circuitry. While there is some hard-wiring—a lob-
ster brain is different from a human brain—many impor-
tant aspects of the network have to evolve during the life-
time of the individual. This means that the structure has
to be self-organized rather than designed.

The fact that the architecture of the brain has to be
self-organized puts some severe constraints on any brain
model. We feel that this issue has in many cases been ig-
nored in previous attempts to model brain function with
neural networks. Conventional attractor neural network
models (for reviews see Amit [1] and Hertz, Krogh, and
Palmer [2]) work in two distinct modes: a learning mode
where the strengths of the neural connections are com-

5033 ©1995 The American Physical Society



5034 DIMITRIS STASSINOPOULOS AND PER BAK 51

puted by an outside agent, and a retrieving mode where
the network recognizes input signals, i.e., provides the
same pattern for several similar input patterns. More ad-
vanced models use complicated back-propagation algo-
rithms which continuously update the connections by a
computation not performed by the neural network itself.
The organization is by design. These models have been
important in the development of technologies for pattern
recognition, and emphasis has been on maximizing their
capacity for learning without regards to realism concern-
ing brain function.

The importance of self-organization has previously
been emphasized in the context of reinforcement learning
models [3]. These models are more realistic with respect
to brain function in the sense that there is no teacher ex-
plaining how to modify the neural connections, but only
a critic telling the system whether its action were success-
ful or not. A feedback signal from the environment is
broadcast simultaneously to all elements. In most previ-
ous work on reinforcement learning, the updating of the
synaptic connections is performed by back-propagation
[4], or some other overseeing agent possessing prior
knowledge of the problem.

There is one exception, however. Barto [5] has intro-
duced a class of networks with “self-interested”” elements
which do not have access to information from elsewhere
in the system. Barto’s concept of self-interest coincides
essentially with our use of the term ‘“‘self-organization”
[6]. The updating of connections is done through gra-
dient descent methods. However, we find that regulation
in such models, in particular for large networks, is
inefficient. There is a weak cause-effect relationship be-
tween the variations of synaptic connections and the out-
put.

Recently, Alstrom and Stassinopoulos [7] introduced a
new class of neural networks, denoted adaptive perfor-
mance networks which, among other things, can track a
moving object. An evaluative feedback signal is sent
democratically to all neurons simultaneously. The rein-
forcement rule depends only on the state of the neuron,
and the neurons to which it is immediately connected,
i.e., the neurons are self-interested. The neuron is re-
warded, or penalized, whether or not its specific action
had anything to do with the successful, or unsuccessful,
output. In addition, there is a regulatory mechanism
which keeps the output, and thus the activity in the net-
work, minimal. This is crucial for the performance of the
network.

Here, we demonstrate that adaptive performance net-
works can be trained to react intelligently to external sen-
sory signals. In a fashion analogous to the behaviorist
techniques used in the training of animals we present our
system with a set of external signals, each of which re-
wards a specific action. The system learns to recognize
all signals and chooses the corresponding rewarding ac-
tion. The network ‘“remembers” the correct response. In
contrast to traditional neural networks, “learning” and
“retrieving” are two aspects of the same dynamical pro-
cess: the neurons blindly perform the same task all the
time. At the individual level they do not behave
differently in the learning and retrieving phases. The

question as to whether the network is in a learning phase
or in a retrieving phase can be judged only by an outside
observer. In fact, at the global system level there is a
rather abrupt spontaneous phase transition between a
learning phase with slow adjustment, and a retrieving
phase with fast adjustment to switching inputs.

One might wonder how the network can remain
robust, i.e., why old information is not erased when the
system is subjected to new information, which affects
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FIG. 1.
represented by random inputs to a number of neurons. For
each signal, here red or green, there is a combination of (as
here) one or more output neurons (shaded circles) which must
fire in order to achieve success. The environment feeds back a
signal indicating whether or not success was achieved. (a) Lay-
ered network; (b) random network.

Block diagram of brain model. Each signal is
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neurons everywhere. This is precisely what is achieved
by the global regulatory mechanism. In order to think
clearly, one has to keep cool. If the output is too high the
threshold is raised; if the output is too low, the threshold
is lowered for all neurons. Biologically, this could be
done by means of modulator chemicals. Since the rein-
forcement signal affects only the active neurons, informa-
tion can be stored in the remaining vast areas of nonac-
tive neurons. The network is kept near a highly suscepti-
ble critical point, or percolation threshold where the ac-
tive neurons are only barely able to connect inputs with
outputs. The connections are by means of linear, or frac-
tal river networks, rather than through bulk lakes. The
neurons work essentially as switches, with strong connec-
tions to output, in contrast to previous reinforcement al-
gorithms.

To summarize: The performance of the network is
based on the democratic reinforcement signal working in
tandem with the global threshold regulation keeping ac-
tivity low. :

II. MODEL AND SIMULATIONS

The goal of any scientific theory or model is to capture
the essential elements of experiments or observations in
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nature. Here we wish to model intelligent behavior at its
simplest. To be concrete, consider the situation in which
a system provides food to a monkey if the correct button
is pressed. The correct button depends on whether a
“red” or ‘“green” light is on. This signal is all the infor-
mation the monkey has in order to figure out which is the
correct button at every instant. The action of the mon-
key is to press one or more buttons. The monkey learns
the correct reaction after a “learning” period of trial and
error. If the outside world changes, i.e., the correct but-
tons are switched, the monkey modifies its behavior. The
animal is able to learn progressively more complicated
patterns. The ability of a model to mimic the process of
learning intelligent responses (leading to satisfaction) to
outside signals is sometimes denoted “artificial intelli-
gence.”

We start by visualizing our model-brain in its em-
bryonic state: a network of neurons with random con-
nections. Sensory signals are fed into the brain random-
ly. The outputs, such as connections with muscle fibers,
are also connected randomly. The result of the output, or
action on the environment, such as whether or not food
was obtained, is fed back to the “brain” through some
global signal, such as a change in the level of a hormone,
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FIG. 2. (a) Performance vs time for system with two input signals which are switched every 2000 time units, or when the system is
consistently successful. Consistency is checked for a period of 250 time steps. After a training period during which the network self-
organizes, the system enters an “intelligent” state with fast switching between the correct outputs. (b) Same for random network; the
two input signals are presented for 5000 time units unless consistent success has occurred. (c) Performance for the same system, but
with 30 neurons damaged after 150 000 time steps. The system has relearned the correct response after 210000 time steps. (d) Same
system with a third input added after 150000 steps. After a “confused” learning period, the correct output for all three inputs is

learned after 450 000 time steps.
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or an increase in the blood-sugar content. There is no
mechanism by which the information can be fed back
selectively to the individual neurons.

In this kind of picture the interplay with the environ-
ment is essential in organizing the brain’s ability to ex-
plore and become more experienced, allowing it to react
intelligently. In order to represent this, our model in-
teracts with the ‘“outer world” in three different ways
(Fig. 1). There is (i) an input signal giving information
about the state of the outer world, (ii) an action by the
brain to the environment, and (iii) a global feedback sig-
nal indicating whether this action was successful or not in
accomplishing the goal. The model is necessarily grossly
oversimplified; its sole purpose is to demonstrate some
simple general principles.

We have studied two network topologies: a layered
one and a random one. In the latter version, both inputs,
outputs, and internal connections are completely random.

DIMITRIS STASSINOPOULOS AND PER BAK 51

N neurons are each connected randomly with C other
neurons. The neurons can be either in a firing state,
n;=1, or a nonfiring state, n;=0. The input to the ith
neuron from other neurons is ;= 3; J; ;n;, where the
summation is over the C interacting neighbors. Initially,
the j’s are randomly chosen in the interval 0 <J <1. The
neuron fires if the input exceeds a threshold 7. The in-
teractions with the environment are implemented as fol-
lows.

(i) The sensory signal is represented by an additional
contribution /' to the input signal of a number of random
neurons. These various branches can be thought of as
different features of the input signal such as sound, shape,
color, smell, position, size, etc. Different inputs are
represented by different sets of random input neurons (see
Fig. 1) [8]. (ii) The output signal is the firing condition of
a set of randomly selected output neurons, i,. For each
input signal the action is considered successful if one or

FIG. 3. Successful firing patterns in the fast switching phase. The two sets of input neurons are colored red and green, respective-
ly. For (a) the red input, output cells 10 and 15 of the bottom row, counting from left to right, must be triggered simultaneously in
order to achieve success; for (b) the green input, the output cells 7 and 12 must be triggered. The yellow squares indicate neurons
which are firing for the two inputs. (c) and (d) The same as above, but in the case where the system has relearned the correct response
after removal of a block of 30 neurons (shaded area). Note the difference from the original response. (e) and (f) Arbitrarily, the
configurations of J; ;’s pointing to the right were chosen for display, for the two cases a-b, and c-d. The different values are depicted
with a rainbow-colored map ranging from black and dark blue for the lowest values to red for the highest.
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more specific but randomly selected neurons, belonging
to the set of output neurons, are all firing. (iii) If the ac-
tion is successful, a positive reinforcing signal r <<1 is
fed back to all firing neurons. If the action is unsuccess-
ful a negative signal is fed back. The reinforcement
modifies all connections between firing neurons,
Jij—Ji ) j(1=J; ;)+m; ;In/n;, where n; denotes

the state of the ith neuron at the next time step and 7, ; is

a random noise between —m, and 7,. The outputs are
normalized, J; ;—J; ;/ 3; J; ;.

This rule differs from the well known Hebb rule in one
crucial aspect: the connection is strengthened only if the
simultaneous firing of two connected neurons is accom-
panied by a simultaneous successful output; otherwise the
connection is weakened.

In addition to the input-output functions described
above, the model has a global control mechanism for the
overall activity [7] for the total number of firing output
neurons 4 = 3, n; . It is important that the output ac-

tivity be kept to a minimum. If 4 exceeds a value A4, the
threshold T is increased, while if 4 is smaller than 4,
the threshold is reduced, T—T +&6sgn( A — 4,). Thus,
if there is no output, or the output is too low, the system
is “thinking,” that is, its sensitivity is increased until an
appropriate output is achieved. If the system is ‘“con-
fused,” i.e., there is too much output, the sensitivity is
lowered. A similar regulation takes place locally
(through the normalization of J; ;’s): when r is positive
the neuron tends to activate as few as possible of its post-
synaptic neurons (in our particular implementation one);
if, however, r is negative it spreads its activity to as many
directions as possible. Conceivably, modulatory chemi-
cals released into the brain from elsewhere could help
performing these functions for the real brain, in addition
to participating in the formation of the synapses, i.e., the
J’s discussed above.

In the layered version, the neurons are arranged in
rows, with each neuron firing to the three nearest neigh-
bors in the next row. Inputs are random, but output neu-
rons are those in the bottom row. At each time step the
system is updated in parallel following the algorithm
above. The performance P of the network is measured by
the time average of the activity at the selected neurons
minus the activity at the rest of the output sites. Ap-
propriate normalization assures that best performance
(P =1) corresponds to constant firing of the selected sites
only, whereas worst performance (P =—1) corresponds
to constant firing everywhere except at the selected sites.
Figures 2 and 3 show the results for a number of different
tasks.

First, the “monkey” experiment defined above was
simulated. A network with 256 neurons was studied,
with C =3 (7,=0.01, »r =0.1, §=0.01/16). Two input
signals, each acting on 16 randomly chosen (but fixed) in-
put neurons, were considered. For each input, a pair of
output cells was defined. The input signals were switched
every 2000 time steps (or when success has been achieved
over 250 consecutive steps). Figure 2(a) shows the perfor-
mance vs time. First, there is a period which we can
identify as a learning phase in which the success rate is
low and changes in a rather noisy and unpredictable
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manner. At some point, the network locks into a state
where success is obtained very quickly in response to the
switching of inputs. In this phase, the system recognizes
(or retrieves) the input signals. The two phases are
separated by a rather sharp phase transition. The ability
to recognize emerges very suddenly. Figures 3(a) and 3(b)
show the firing patterns in the fast switching phase for
the two inputs, respectively. Inputs and outputs are con-
nected with orange firing neurons. Figure 2(b) shows the
performance for the random-topology case. Again a
sharp, self-organized transition from a learning mode to a
retrieval mode is observed.

We emphasize that the dynamics of this learning phase
is distinctly different from the learning dynamics charac-
terizing back-propagation based algorithms. To illustrate
this point we have applied back-propagation to solving
the simple recognition problem described above. To
make the comparison more manageable we considered a
smaller 4X4 system for the layered architecture and we
confined our input to the top row (the output was
confined to the bottom row as before). The performance
P for the two learning algorithms is shown in Fig. 4. In
the back-propagation algorithm, improvements in perfor-
mance are gradual and smooth, in the adaptive perfor-
mance algorithm they are not: a rapid improvement in
performance can be temporarily interrupted by sudden
dips [9]. In fact this “erratic” nature of the learning pro-
cedure makes the algorithm biologically plausible. The
comparison is too sketchy to have any weight as a perfor-
mance test of the two algorithms. The most important
difference, of course, is that the back propagation algo-
rithm is not self-organized in the sense that it requires
outside computation.

What happens inside the network during the learning

0.4

4] 500 1000 1500 2000

FIG. 4. (a) Performance vs time for the back-propagation
learning algorithm. For the layered architecture (C =3) and
for a 4X 4 size system two input-output pairs, (1,0,0,0)-(0,0,0,1)
and (0,0,0,1)-(0,1,0,0), were considered. At each trial the inputs
were switched, and the system updated. The activation function
tanhBh was used (8=0.5) and the “learning” coefficient 7=0.1
involved in determining the J; ;’s from the back-propagated er-
rors (for details see Hertz, Krogh, and Palmer in Ref. [2]). (b)
Performance vs time for the adaptive performance learning al-
gorithm (i)—(iii). Input signals were switched every 1000 time
units or if consistently successful for 50 time steps (7,=0.05,
r=0.1,86=0.01/4).
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FIG. 5. Movie showing the “fast” switching
between the ‘“‘green” response and the “red”
response shown in Figs. 3(a) and 3(b). The
transition from “green” to “red” takes place
through five complicated steps and back to
“green” through an additional six steps.



51 DEMOCRATIC REINFORCEMENT: A PRINCIPLE FOR BRAIN ...

phase? Through a complicated organizational process,
the system creates internal contacts or connections be-
tween selected parts of the input signal and the correct
output cell(s). The process can be thought of as the for-
mation of a river network connecting output with input.
When the output is incorrect, the river beds are raised
and at the same time the flow is weakened (to minimize
flooding). When the flow is correct, the river beds are
deepened and as the result the pattern of the flow be-
comes more one dimensional. :

The state of the system after completion of the learning
phase cannot be calculated by means of a simple algo-
rithm, and it is generally not reproducible in the sense
that it depends on the actual random numbers. Note that
there is a small activity not connected to the output. The
corresponding neurons do not ‘“know” that they are not
responsible for the success, and receive, undeservedly, a
reward similarly to all other firing neurons, including the
ones connecting to the correct output. Figure 5 shows a
movie of the switching from the ‘“red” response [Fig.
3(a)] to the “green” response. The switching from “red”
to “green” and back takes place through eleven inter-
mediate steps. We doubt that any engineer would have
come up with such a solution. If we were free to con-
struct the network by ‘design” rather than by self-
organization we could obviously come up with a much
simpler and more efficient design. Traditional neural net-
works have no real dynamics taking them from one out-
put to the next in the retrieval phase: the output is sim-
ply a unique function of the input.

The ability of fast switching is probably related to the
system being tuned to a critical percolation threshold by
keeping the output low. The signal is barely able to prop-
agate through the system. The large susceptibility of the
system to modifications of the input is related to the criti-
cality. In “sand” models of self-organized criticality [10],
the criticality is achieved by keeping the input rate, rath-
er than the output, low.

Figure 2(c) also shows the response to ‘“damage” done
to the network [Figs. 3(c) and 3(d)]. After ~ 150000 time

5039

steps, a block of 30 neurons was removed from the net-
work. After a transient period [Fig. 2(c)], the network
has relearned the correct response, carving new connec-
tions in the network. In other words, instead of using
some features of the input signal the system learns to use
other features. Think of this as replacing “vision” with
“smell.” The memory is distributed and robust, as it
should be in order to represent real brain function.

Figure 2(d) shows the situation where a third input
(and corresponding pair of output cells) was added after
the first two responses had been learned. After a tran-
sient period where the system is confused and the success
rate is low, the network eventually learns the three ap-
propriate responses.

The complexity of the switching behavior of the system
hints to the fact that it is not only the well developed
“river beds,” where most of the activity takes place, that
are important for the function of the network, but also
the relatively silent regions in between. Evidence of this
can be seen in the rather complicated landscape of the
J;;’s. Figures 3(e) and 3(f) show the strengths of the con-
nections with a color code. The landscape is strikingly
rugged. One might have expected well-carved riverbeds
and isolated switches. Where it would seem that this
configuration is more efficient from an engineering point
of view, it is not compatible with the self-organization
process since it is unlikely for the system to find such rare
optional configurations on its own. The ruggedness, with
many neurons working near the threshold, makes the net-
work susceptible to changes.

Of course, our “pocket-calculator” brain model is not a
serious model of any real brain. Its sole purpose is to
demonstrate that aspects of brain function can be
modeled with a structure that has a minimum of com-
plexity, as is imperative for a real biological brain. A
brain working according to these principles could be a
relatively simple organ without much structure. Little
information is needed to construct the simple network
with essentially arbitrary connections.
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FIG. 1. Block diagram of brain model. Each signal is
represented by random inputs to a number of neurons. For
each signal, here red or green, there is a combination of (as
here) one or more output neurons (shaded circles) which must
fire in order to achieve success. The environment feeds back a
signal indicating whether or not success was achieved. (a) Lay-
ered network; (b) random network.



FIG. 3. Successful firing patterns in the fast switching phase. The two sets of input neurons are colored red and green, respective-
ly. For (a) the red input, output cells 10 and 15 of the bottom row, counting from left to right, must be triggered simultaneously in
order to achieve success; for (b) the green input, the output cells 7 and 12 must be triggered. The yellow squares indicate neurons
which are firing for the two inputs. (c) and (d) The same as above, but in the case where the system has relearned the correct response
after removal of a block of 30 neurons (shaded area). Note the difference from the original response. (e) and (f) Arbitrarily, the
configurations of J; ;’s pointing to the right were chosen for display, for the two cases a-b, and c-d. The different values are depicted
with a rainbow-colored map ranging from black and dark blue for the lowest values to red for the highest.



FIG. 5. Movie showing the “fast” switching
between the “‘green” response and the ‘“red”
response shown in Figs. 3(a) and 3(b). The
transition from “green” to “red” takes place
through five complicated steps and back to
“green” through an additional six steps.



